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ABSTRACT The genetic similarity of New and Old World samples of Spalangia spp. (Hymenoptera:
Pteromalidae) was examined using two ribosomal DNA regions. The species examined were Spalangia
cameroni Perkins, Spalangia endius Walker, Spalangia gemina Boucek, Spalangia nigra Latreille,
Spalangia nigroaenea Curtis, and Spalangia slovaca Bou¢ek. Two species of Muscidifurax, Muscidifurax
raptor Girault & Sanders and Muscidifurax zaraptor Kogan & Legner (Hymenoptera: Pteromalidae)
were included as outgroup taxa. The internal transcribed spacer (ITS)-1 region was highly variable
among Spalangia species with many insertions/deletions making alignment of the sequences difficult.
The D2-D3 region of the 28s ribosomal gene and the nuclear rDNA 18s gene were more conserved
and enabled phylogenetic analysis. No genetic differentiation was observed among S. cameroni and
S. endius samples from Kazakhstan, Russia, and North America. New World samples of S. nigroaenca
are genetically distinct from S. slovaca, a morphologically similar Old World species that is newly
recorded from Kazakhstan and Russia. The intact 920 bp ITS-1 amplicon of S. nigroaenea was much
larger than the 780-bp amplicon of S. slovaca. Kimura two-parameter genetic distance between the
two species was 0.015 for the 28s region. Otherwise, the smallest genetic distance among recognized
Spalangia species was 0.037 between S. endius and S. nigra. The genetic distance between M. raptor
and M. zaraptor was 0.004. Based upon these results, the utility of the D2-D3 region of the 28s ribosomal
gene is substantiated for differentiating species of Spalangia. The molecular analysis of the six Spalangia
species revealed two groupings: S. nigroaenea and S. slovaca and S. cameroni and S. gemina. A third
clade, S. endius and S. nigra, was observed, but bootstrap support was weak. These relationships were
compared with those indicated by morphology and all agreed except possibly between S. endius and
S. nigra, for which morphological evidence is equivocal. Morphological features are described and
illustrated to distinguish the morphologically most similar species, S. nigra, S. nigroaenea, and S. slovaca,

from each other and from other Spalangia spp.
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Wasps in the genus Spalangia Latreille (Hymenoptera:
Pteromalidae) are frequently observed parasitoids of
house flies and stable flies (Legner et al. 1967, Petersen
and Meyer 1983, Jones and Weinzierl 1997), and many
are pupal parasitoids of filth flies in the confined live-
stock environment (Miller and Rutz 1990, Petersen et
al. 1990). Most of the Spalangia species found in North
America have cosmopolitan distributions, being found
also in Europe, Asia, and the Pacific regions. However,
much of the present day distribution of these wasps is
probably secondary, having either been intentionally
introduced to control pest flies or simply accompanied
such flies in their range expansions around the world.
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Given the broad distribution of these wasps, several
species have been described from disparate geo-
graphic regions and subsequently synonymized
(Boucek 1963). Phylogenetic relationships among
Spalangia species have yet to be investigated rigor-
ously, and relationships are poorly known, although
Boucek (1963) divided the 14 Holarctic species rec-
ognized into four species groups based on morpho-
logical similarity. In this study, we examine the genetic
similarity of North American, European, and Asian
samples of six Spalangia species—Spalangia cameroni
Perkins, Spalangia endius Walker, Spalangia gemina
Bougek, Spalangia nigra Latreille, Spalangia nigroae-
nea Curtis, and Spalangia slovaca Bou¢ek—and com-
pare indicated relationships to those suggested by
morphology within the context of the species-groups
established by Boucek (1963).

Eucaryote nuclear rDNA is organized as tandem
repeats with copy numbers up to 5000 per genome.
Each repeat consists of three genes, 18s, 5.8s and 28s,
and three spacer regions, the intergenic spacer (IGS),
and two internal transcribed spacers (ITS), ITS-1 be-
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tween the 18s and 5.8s and ITS-2 between the 5.8s and
28s genes. The high copy number makes rDNA easier
to amplify than single copy genes, but variation among
copies can be problematic (Hwang and Kim 1999). In
this study, we examined two nuclear ribosomal se-
quences. ITS-1 has been used to differentiate species
and closely related populations (Pfeifer et al. 1995,
Powers et al. 1997, Szalanski et al. 1997, Taylor and
Szalanski 1999). This region diverges at a rate 3-4
times faster than mitochondrial DNA in reproduc-
tively isolated populations, but, in general, the repeats
remain relatively homogeneous within individuals and
populations (Zimmer et al. 1980, Elder and Turner
1995). Rapid divergence and concerted evolution
make the ITS region ideal for molecular diagnostics.
The 28s rDNA gene has proven useful for species
diagnostics and molecular systematics of parasitic Hy-
menoptera (Campbell et al. 2000) among other or-
ganisms. This gene is more conserved that the ITS-1
region (Hwang and Kim 1999).

The objective of this study was to determine the
phylogenetic relationships between New and Old
World populations of Holarctic Spalangia species as
well as the relationships among Spalangia species.
Morphological features are newly described and illus-
trated to assist recognition of S. slovaca. A secondary
goal was to develop markers for using molecular tech-
niques to differentiate the more common Spalangia
species.

Materials and Methods

Techniques used for this study were similar to those
used by Taylor and Szalanski (1999). DNA was iso-
lated from frozen and alcohol-preserved specimens by
using the Puregene DNA isolation kit (Gentra Sys-
tems, Inc., Minneapolis, MN). The ITS-1 region was
amplified with the forward primer rDNA, (TTGAT-
TACGTCCCTGCCCTTT; Vrain et al. 1992) and one
of three reverse primers: 1r, 35r (GTGATCCACCGT-
TCAGGGTA and AGCTGGCTGCGTTCTTCATCGA,
respectively; Ratcliffe et al. 2002) or rDNA, 5. (AC-
GAGCCGAGTGATCCACCG; Cherry et al. 1997).
The D2 and D3 regions of the 28s ribosomal gene were
amplified with the primers D2f and D2r (GCGAA-
CAAGTACCGTGAGGGG and TAGTTCACCATCTT-
TCGGGTC, respectively; Belshaw and Quicke 2002).
The polymerase chain reaction (PCR) protocol was 35
cycles of 94°C for 1 min, 60°C for 1 min, and 72°C for 1
min. Amplification products were cleaned with Micron
YM50 filters (Millipore Corporation, Billerica, MA) and
sequenced by the Kansas State University Sequencing
Facility (Manhattan KS). Sequences were aligned with
BioEdit 5.09 (Hall 1999) and CLUSTAL W (Thompson
etal. 1994). ITS-1 sequences were truncated to the 3’ end
of the Ir primer for comparisons.

Muscidifurax raptor Girault & Sanders and Muscidi-
furax zaraptor Kogan & Legner (Hymenoptera: Pte-
romalidae) were used as the outgroup taxa for the
phylogenetic analysis of the 28s data set, and M. raptor
was the outgroup taxon for the 18s data set. Maximum
likelihood and unweighted parsimony analysis on the
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Table 1. Strains of Spalangia spp.
Species n Origin Yr collected

S. cameroni 2 Arkansas® 2004
2 Florida” 2003
2 Minnesota“ 1999
2 Nebraska? 2001
2 New York® 2002
3 Kazakhstan 1999
2 Russia® 1999

S. endius 2 Arkansas® 2004
2 Florida” 2003
2 Minnesota“ 1999
2 Nebraska? 2002
2 Kazakhstan 1999
2 Russia® 1999

S. gemina 2 Brazil” 1991

S. nigra 2 Minnesota® 2002
3 Nebraska? 2002

S. nigroaenea 2 Florida ” 2003
2 Minnesota“ 2002
4 Nebraska? 2001, 2002

S. slovaca 2 Kazakhstan” 1999
2 Russia® 1999

“ University of Arkansas, Fayetteville, AR, 36° 18’ N, 95° 25’ W.

b USDA-ARS, Gainesville, FL, 20° 47" N, 82° 29’ W.

¢ University of Minnesota, Minneapolis, MN, 44° 57" N, 98° 28’ W.

4 Midwest Livestock Insect Research Laboratory, USDA-ARS, Lin-
coln, NE, 41° 10" N, 96° 28' W

¢ Cornell University, Ithaca, NY, 42° 26" N, 76° 25" W.

/Colony maintained at USDA-ARS, Gainesville FL, pooled from
nine locations in the vicinity of Almaty, 43° 10’ N, 77° E; 43° 10’ N, 76°
50" E; 43° 20" N, 77° 10" E; 43° 40’ N, 78° E; 43° 30" N, 76° 30'E; 43° 10’
N, 76° 50’ E; 43° 20’ N, 77° 10’ E; 43° 20’ N, 77° 15’ E; and 43° 40’ N,
77° 30" E.

£ Colony maintained at USDA-ARS, Gainesville FL, pooled from
seven locations in the vicinity of Kropotkin and Maikop, 45° 20’ N, 41°
E; 45° 20" N, 41° E; 45° 20’ N, 40° 30" E; 45° 15’ N, 40° 25" E; 45° 20" N,
40° 30" E; 44° 10’ N, 40° E; and 45° 5’ N, 40° 10'E.

" Colony maintained at USDA-ARS, Gainesville FL, collected near
Sao Paulo, Brazil.

alignments were conducted using PAUP* 4.0b10
(Swofford 2001). Gaps were treated as missing data.
The reliability of trees was tested with a bootstrap test
(Felsenstein 1985). Parsimony bootstrap analysis in-
cluded 1,000 resamplings by using the Branch and
Bound algorithm of PAUP*. For maximum likelihood
analysis, the default likelihood parameter settings
were used (HKYS85 six-parameter model of nucleotide
substitution, empirical base frequencies, and transi-
tion/transversion ratio set to 0.917:1 for the 18s data
set, and 1.540 for the 28s data set). These parameters
were used to carry out a heuristic search using PAUP*,
by using either the single most parsimonious tree as
the starting tree, or stepwise addition.

The samples used for this study are listed in Table
1. Vouchers of the species we identify as S. slovaca are
deposited in the Canadian National Collection of In-
sects (Ottawa, Ontario, Canada) and vouchers of all
the species are deposited in the Nebraska State Mu-
seum Entomology (Lincoln, NE) collection. All se-
quences have been submitted to GenBank
(AY855172-AY855208 for the 28s rDNA amplicon and
DQ411978-DQ412041 for the ITS-1 amplicon). Mor-
phological terminology follows Bougek (1963) and
Gibson (1997).
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slovaca 1 CGCTACTACC GATTGAATGA TTTAGTGAGG TCTTCGGACC GGTGCGCGGC AATGTCTTCT
nigroaenea 1 Y A
slovaca 61 TAGCATTGCC GATTGTGCTG GGAAGATGAC CAAACTTGAT CATTTAGAGG AAGTAAAAGT
nigroaenea Bl i aisie s s s s msisiaimisie se s e siseimae sie s ssiee s sassmeie s sacewamane
slovaca 121 CGTAACAAGG TTTCCGTAGG TGAACCTGCG GAAGGATCAT TAACGTATGC G--CAACTAA
nigroaenea 121 (ccvisnine ssmsnsnsss @easssnss s SresEIRses EEEsMmEs s .AA..TA.G.
slovaca 179 AACGCAACGT CTTTTAAATC GTTCCTCGCG AACGATCAAA A————————— —— CTATA-——
nigroaenea 181 ...iiin... B € AATAAAAGG TGTG...ATC
Slovaca 224 —-TTCTGAAC TTGT-GCCCC CGTCCGTGCG TATCTTGCGC GCGGATTGGG GGGGCTCGTT
nigroaenea 239 CTC....... ..C.T.T.T. G..T..C.T. .-C.C..G.G ...CGCGA.T ..A.......
slovaca 282 CGGG CTC GAATGTGCAT TGAAAATGCC GGATCGATCG
nigroaenea 298 ...AACACAC AGAGGAGAAA CGCACCT... ....A..... Coviome Coceo wemomamons
slovaca 320 GACGGTACGC GGCTGCCTTG TATCATCGTA CATGGCTGTC CGCTTCATCC ATTGATTCGG
nigroaenea 358 ecsssnsns ssmswses CT Co———————— — s Bs ssasmsnses CTT:cs5 =
slovaca 380 TGCGTAGTCT CGCTGTGGCA ACCTACTCCT CT T CTCAGTGTCA
nigroaenea 409 .:s::Censne asssciniss ss0sssssss + +ACTCCTCT CTCTICTCTC: Tiisvsasss
Slovaca 423 ACGCAGTCAC GC GAGAG AGGGGCGATC GTC-TTGTAC
nigroaenea 469 ... .ATGGGAGAA AAAGGGAGTG TGTGA..C.. .......... ...G.C....
slovaca 459 GA-—————- T CGATGGTTTT TGAATGAATC CACGCCCGTT CAGTCGAGAT TGCGCCATCG
nigroaenea 529 . ATGATGA. wsvscsecsss msmssinsas somemonoss newsmos sss I
slovaca 512 TGCTCGCTTT ACACGAAGCG TGCGATGCGA CGCCTTTAGT A----ACTAT TTT--——-—--—
nigroaenea BB i——rssssns Tiwsmsnsss AsesGissse ssasmsnsss CCGTT..CG. CG.CTTGATC
slovaca 560 —————————— —GGTAACTTT GGGCCGACGA CGAGGGCAAT A-———————— —————— CGCT
nigroaenea 647 GACGGTCGCG C...T...vt vvvnnnnnnn .T..A..CGC GTGTGTTATA TACGCG....
slovaca 595 CGAATCGTTG AATACGTACC GTCTGGTCGG CGCCGCTGTT TAGACTTGTG CTATCGGCGA
nigroaenea TOT e e iiiiie cee T .C.C.C.... .G..... T.T
slovaca 655 GCGCTTGACT ATTTTTGAAT GCTTTGTTTT AAAATGCAAT GCGTAAAAAA TATTAAATGA
nigroaenea 76T vevieennn. =B s sne wswemae Bee cemomsnoes swasmenisnnns ssasms =
slovaca 715 T
nigroaenea 825

Fig. 1. ITS-1 sequences for S. nigroaenea and S. slovaca. A “” indicates identity, “-” indicates an insertion/deletion.

Results

Molecular Analysis. The ITS-1 amplicon varied
greatly among the six Spalangia species in this study.
The length of the intact amplicon varied from 655 bp
in S. nigra to 922 bp in S. nigroaenea. High levels of
interspecific differentiation made alignment of the
sequences for phylogenetic analysis difficult. Samples
of S. cameroni and S. endius from Russia, Kazakhstan,
and the United States revealed little intraspecific vari-
ation. Two single-base polymorphisms, a T/G at base
310 and C/A at base 371, were observed in S. cameroni
from Russia and Kazakhstan. Four of five wasps from
Russia were G/A (310/371) for these polymorphisms,
and the fifth was G/C. Two of four wasps from Ka-
zakhstan were G/A, and the other two were T/C. All
North American S. cameroni were T/ C. The polymor-
phism in base 371 was in a Taql restriction site and was
verified in restriction digests. No variation was ob-
served among S. endius from Russia, Kazakhstan, Ar-
kansas, Florida, Minnesota, or Nebraska. The ITS-1
amplicon of S. nigroaenea differed significantly from
that of S. slovaca. The S. nigroaenea amplicon was 920

bp compared with 780 bp for S. slovaca (Fig. 1). Seven
insertion/deletions of 7-23 bp each plus smaller in-
sertion/deletions of 1-4 bp and substitutions were
diagnostic for the two species. No variation was ob-
served within either of the two species.

Although the ITS-1 region was too variable to align
for phylogenetic analyses, this amplicon contained 164
bp of the 3" end of the 18s rDNA gene. Kimura two-
parameter genetic distances among and within species
are presented in Table 2. The 3" end of the 18s gene
did not differ between S. nigroaenea and S. slovaca.
Other interspecific genetic distances varied from 0.006
between S. endius and S. nigra to 0.046 between S.
nigroaenea and S. nigra. Intergeneric genetic distances
were between 0.053 and 0.067. The average base fre-
quencies for the 18s gene were A = 0.29,C =0.18,G =
0.26, and T = 0.28. The aligned 18s DNA data matrix,
including the outgroup taxa resulted in a total of 161
characters. Of these characters, 18 (11%) were vari-
able, and 12 (7%) were phylogenetically informative.
This data set had only one most parsimonious tree
(length = 23, CI = 0.957), as documented using the
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Table 2. Genetic distance among Spalangia spp. 18s ribosomal gene (Kimura two-parameter model)

S. cameroni S. endius S. slovaca S. nigroaenea S. gemina S. nigra M. raptor
S. cameroni <0.006 0.033 0.026 0.026 0.013 0.033 0.067
S. Endius 0.000 0.040 0.039 0.026 0.006 0.053
S. slovaca 0.000 0.000 0.013 0.046 0.054
S. nigroaenea 0.000 0.013 0.046 0.054
S. gemina 0.000 0.026 0.053
S. nigra 0.000 0.060

Branch and Bound search algorithm of PAUP*. Boot-
strap analysis of the aligned Spalangia and the out-
group taxon resulted in a consensus tree with three
distinct branches. These clades included S. cameroni
and S. gemina, S. endius and S. nigra, and S. nigroaenea
and S. slovaca. Regardless of whether the starting tree
was the most parsimonious tree or was obtained via
stepwise addition, the maximum likelihood search
found only one tree (—In L = 1953.966). The maxi-
mum likelihood tree was identical to the maximum
parsimony tree.

The D2-D3 amplicon of the 28s rDNA gene was
~1765 bp, of which 680 bp were reliably sequenced in
all of the wasp species and used for analysis. The 28s
region was much more conserved than ITS-1. Diver-
gence among recognized Spalangia species was 0.037-
0.100, whereas that between M. raptor and M. zaraptor
was 0.004. Divergence between Spalangia and Mus-
cidifurax was =0.159 (Table 3). The D2-D3 region was
slightly G-C biased in both Spalangia and Muscidi-
furax, 57 and 60%, respectively. No differentiation
between Old and New World populations of either S.
cameroni or S. endius was observed. Two polymorphic
nucleotides were observed in S. cameroni. One wasp
from Nebraska had a C at base 163, whereas all of the
others had a T at that position. Review of the chro-
matogram indicated that this wasp was polymorphic
with both C and T versions present. One S. cameroni
from Russia had an A at base 653, whereas all of the rest
of the S. cameroni, including those from Kazakhstan,
had a T at this site. Examination of the chromatograms
indicated that both S. cameroni from Russia were poly-
morphic at this site as were the two S. cameroni from
Nebraska. S. cameroni from New York and Kazakhstan
seemed to be fixed for T at this position. No variation
was observed among New and Old World S. endius. S.
nigroaenea and S. slovaca were clearly divergent.
Twelve of 680 nucleotide sites were diagnostic for the
two species, whereas no variation was observed within
either species.

The aligned 28s DNA data matrix, including the
outgroup taxa resulted in a total of 678 characters. Of
these characters, 151 (22%) were variable and 147
(22%) were phylogenetically informative. This data
set had only one most parsimonious tree (length =
204, CI = 0.843), as documented using the Branch and
Bound search algorithm of PAUP*. Bootstrap analysis
of the aligned Spalangia and the outgroup taxa indi-
cates that S. cameroni and S. gemina are sister species
as are S. nigroaenea and S. slovaca (Fig. 2). A third
clade, S. endius and S. nigra, had poor support in the
bootstrap analysis, 51%. Distinct clades were not ob-
served among New and Old World populations of
either S. cameroni or S. endius. Regardless of whether
the starting tree was the most parsimonious tree or was
obtained via stepwise addition, the maximum likeli-
hood search found only one tree (—In L = 2658.754).
The maximum likelihood tree was identical to the
maximum parsimony tree.

Although morphological differentiation of Spal-
angia species is easier than for Muscidifurax species, it
can still be difficult, especially for those not familiar
with the characters or for those trying to identify
immature parasitoids within the host puparium. Re-
striction enzyme digests of the ITS-1 amplicon were
used to easily differentiate all of the Spalangia species
in this study, including S. slovaca and S. nigroaenea
(Table 4). Although the fragment sizes presented are
from simulated digests based upon the sequences
(Webcutter 2.0; Heiman 1997), all digests were veri-
fied.

Morphological Analysis. Virtually no information is
available concerning interspecific relationships
among Spalangia species. Bou¢ek (1963) treated 45
world species. Of these species, Boudek segregated
into four species-groups the 14 species recognized
from the Holarctic region. The “nigra” group consisted
of S. nigra, Spalangia irregularis Bouéek, and Spalangia
rugulosa Forster and included species with dense
coarse sculpture, the pronotum without any distinct,

Table 3. Genetic distance among Spalangia spp. D2-D3 regions of 28s ribosomal gene (Kimura two-parameter model)
S. cameroni S. endius S. slovaca S. nigroaenea S. gemina S. nigra M. raptor M. zaraptor
S. cameroni <0.003 0.092 0.100 0.100 0.067 0.066 0.154 0.152
S. endius 0.000 0.080 0.083 0.082 0.037 0.141 0.137
S. slovaca 0.000 0.015 0.095 0.064 0.159 0.157
S. nigroaenea 0.000 0.096 0.063 0.162 0.161
S. gemina 0.000 0.062 0.149 0.148
S. nigra <0.002 0.148 0.148
M. raptor 0.004
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Fig. 2. Maximum parsimony tree of Spalangia spp. based upon 680 bp of the 28s D2-D3 region of rDNA.

isolated cross-line of punctures. The “nigroaenea”
group consisted of S. cameroni, S. endius, S. gemina, S.
nigroaenea, and S. slovaca and included species that

had a distinct pronotal cross-line. An unnamed group,
consisting of Spalangia crassicornis Bouéek, Spalangia
erythromera Forster, and S. nigripes, included those

Table 4. Restriction fragment lengths of ITS-1 amplicon based upon simulated digests (Webcutter) for Spalangia spp
Restriction . . . . o
S. cameroni S. endius S. gemina S. nigroaenea S. nigra S. slovaca
enzyme
Uncut 734 730 741 922 655 785
Msel 299, 235, 194, 6 259, 197, 180, 94 287, 194, 173, 87 634, 197, 67, 24 232, 226, 197 491, 196, 42, 32, 24
Taql 232, 230, (101, 49), 263, 141, 124, 70, 60, 304, 297, 116, 24 363, 187, 179, 73, 61, 262, 221, 153,19 324, 155, 148, 99,

64, 58 38, 34

34,14, 11

34, 25

Variable sites are indicated parenthetically.
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Figs. 3-6. Figs. 3 and 4, lateral mesosoma: 3, S. nigra; 4, S. nigroaenea. Figs. 5 and 6, S. nigra: 5, petiole; 6, forewing (aoi,
anterior oblique impression; bes, basal cell setae; csl, costal setal line; pcl, pronotal cross-line; and pre, pronotal carina).

species without a distinct pronotal cross-line but with
a developed frenal line on the scutellum. Finally, the
“fuscipes” group, consisting of S. drosophilae, Spalangia
fuscipes Nees, S. hematobiae, and Spalangia subpunc-
tata Forster, included species with the frenal line weak
or lacking. Although these species-groups reflect a
general reduction in sculpture from the nigra-group to
the fuscipes-group, they are based on “key” characters
that do not necessarily reflect phylogenetic relation-
ships. For example, of the three species assigned to the
nigra-group, S. irregularis and S. rugulosa have an al-
most completely rugose pronotum, because the de-
pressions are formed by irregular linear ridges
(Boucek 1963, figs. 8 and 12), whereas in S. nigra the
pronotum is mostly punctate because the individual
depressions, although crowded, are more distinctly
separate and circular (Bou¢ek 1963, fig. 14). This
“punctuate” type of sculpture is more similar to S.
nigroaenea, S. slovaca, and S. endius within the nigroae-
nea-group (Boucek 1963, figs. 17, 23, 30) as well as
many other Spalangia species. Although S. nigra was
included in the nigra-group because it lacks a distinct
pronotal cross-line, it does indeed have a uniformly
developed cross-line of punctures near the posterior
margin of the pronotum. It is only because the prono-
tum is more extensively and closely punctate in S.
nigra that the cross-line (Fig. 3, pcl) is less distinct

than for S. nigroaenea (Fig. 4, pcl) and other nigroae-
nea-group species. Furthermore, the rugose pronotal
sculpture of S. irregularis and S. rugulosa is similar to
the pronotal sculpture of S. cameroni and S. gemina
within the nigroaenca-group, except that in the latter
two species the sculpture is effaced medially so that
the posterior line of punctures is distinct (Boucek
1963, fig. 26). Consequently, depending on polarity of
pronotal sculpture, i.e., punctate — rugose or rugose
— punctate, and possible character transformation
within these, e.g., entirely rugose — partly rugose, S.
nigra could be more closely related to S. nigroaenea, S.
slovaca and S. endius, whereas S. irregularis and S.
rugulosa could be more closely related to S. cameroni
and S. gemina.

Ofthe five species assigned to the nigroaenea-group,
both sexes of S. nigroaenea and S. slovaca have a con-
spicuously setose petiole, with several long white setae
projecting from either side over at least its anterior
half (Fig. 5; Boucek 1963, fig. 76), whereas S. endius,
S. cameroni, and S. gemina have the petiole bare or with
only one or two short setae projecting dorsally or from
either side. A conspicuously setose petiole is also
shared with both sexes of all nigra-group species ex-
cept possibly for S. irregularis, of which we have seen
only asingle female and male paratype. The female has
a conspicuously setose petiole like other members of
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the group, but the male has only three long setae
projecting from one side near its middle. This asym-
metry probably results from abrasion of the setae from
one side, but additional specimens are required to
determine extent and variability of the petiolar setae
in S. irregularis males. Both sexes of the Neotropical
species Spalangia chontalensis Cameron also have a
conspicuously setose petiole (Boudek 1963, fig. 76)
and a punctate pronotum (Bouéek 1963, fig. 77) that
would place the species within the nigroaenca-group
sensu Boucek. Other species that we know from at
least the Nearctic, Palearctic and Neotropical regions
have the petiole bare or with only one or two short
setae projecting dorsally or from each side, except for
S. fuscipes. At least some females and males of this
species have three or four long setae projecting lat-
erally and dorsally from near the middle of the petiole,
similar to the male of S. irregularis. However, S. fus-
cipes is undoubtedly more distantly related to the
former group of species based on a different habitus
and sculptural features, including much finer pronotal
and scutellar sculpture (Boucek 1963, fig. 52) and a
different form of mesopleural sculpture. This charac-
ter-state distribution indicates that a setose petiole is
either the groundplan state for Spalangia and the setae
have been lost independently in different lineages, or
that they have been derived independently in at least
two lineages. This cannot be resolved without a com-
prehensive phylogenetic analysis. If a conspicuously
setose petiole is apomorphic, then S. irregularis, S.
rugulosa, S. nigra, S. nigroaenea, S. slovaca, and S. chon-
talensis are indicated to comprise a monophyletic
group within Spalangia, which would not support the
S. nigra + S. endius relationship indicated by genetic
similarity (Tables 2 and 3; Fig. 2).

S. nigra is one of four species, including S. nigroae-
nea, S. slovaca, and S. chontalensis that share both a
coarsely punctate (rather than rugose) pronotum and
a conspicuously setose petiole, but it differs from the
other three species in several features. Like most other
species of Spalangia, S. nigra has the pronotum
rounded anteriorly, the sculpture being uniformly
punctate-alveolate posterior to the crenulate furrow
that differentiates the neck from the collar (Fig. 3).
Individuals of the other three species have a variably
distinct pronotal carina (Fig. 4, prc) dorsally that sep-
arates an anterior, more vertical portion of the collar
from the larger horizontal portion of the collar. Even
if the anterior pronotal carina is indistinct dorsally,
anterolaterally there is a distinct vertical carina on the
side of the pronotum. This uniquely shared feature
indicates that S. chontalensis, S. nigroaenea and 8. slo-
vaca comprise amonophyletic group, and supports the
relationship between S. nigroaenea and S. slovaca in-
dicated by genetic distance. S. nigra also has a large,
subtriangular “anterior oblique impression” sensu
Boucek (1963) (fig. 3), the sculptured region expand-
ing ventrally and extending broadly along the trans-
episternal ridge (Fig. 3, aoi), which is similar to the
mesopleural sculpture patterns of the two other nigra-
group species, but also S. endius within the nigroaenea-
group. S. chontalensis, S. nigroaenea, and S. slovaca have
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a more or less vertical, lunate-to-semicircular anterior
oblique impression (Fig. 4, aoi; Bou¢ek 1963, fig. 3),
which is more similar to the sculpture patterns of S.
cameroni and S. gemina. Both sexes of all three nigra-
group species and S. chontalensis also have a line or
lines of setae on the dorsal surface of the forewing
along the cubital and basal folds as well as some setae
within the basal cell (Fig. 6, bes, csl), whereas females
of S. nigroaenea lack these setae or have only 1-3
scattered setae near the apex of the basal cell, and both
sexes of S. slovaca lack the setae. Presence or absence
of the setae is also variable in other Spalangia. For
example, males of S. endius have the setae, whereas
females usually lack the setae, and both sexes of S.
cameroni and S. gemina lack the setae, which indicates
independent loss or gain of the setae in different Spal-
angia lineages. However, if polarity is from presence
—> absence of setae for S. chontalensis + S. nigroaenea
+ S. slovaca, then the former species is indicated as the
sister species of the latter two species, the setae being
lost from females of the immediate ancestor of S.
nigroaenea + S. slovaca and subsequently also from the
males of S. slovaca. Regardless, the presence of setae
readily differentiates both sexes of S. chontalensis from
those of S. slovaca, and males of S. nigroaenea from
males of S. slovaca, but not females of S. nigroaenea and
S. slovaca. Bou¢ek (1963) differentiated females of S.
nigroaenea and S. slovaca based on comparatively sub-
tle features. Compared with S. slovaca, S. nigroaenea
was stated to have a subpentagonal versus subglobose
pronotal collar (Boudek 1963, cf. figs 17, 23), oblong
versus subquadrate distal funicular segments (Boudek
1963, cf. figs 18, 22), gena longer versus shorter than
eye length, and head oblong versus hardly longer than
broad (Boucek 1963, cf. figs 19, 20 with 21), although
Bouéek noted that head structure was variable in S.
nigroaenea (Boucek 1963, cf. figs 19, 20). Females of S.
nigroaenea differ more conspicuously from S. slovaca
in sculpture of the antennal scape. The outer surface
of the scape of female S. nigroaenea is uniformly cov-
ered with distinct, separate, setiferous punctures
(Figs. 11 and 13), whereas the inner surface is more or
less longitudinally strigose apically, but it has a con-
spicuous, bare, smooth and shiny longitudinal region
over at least its basal half (Figs. 12 and 14). Females of
S. slovaca lack distinct setiferous punctures on the
outer surface of the scape, the setae arising from very
shallow and more closely crowded punctures, so that
the surface seems rougher and less shiny than in S.
nigroaenea, with the ridge-like interstices forming
“somewhat longitudinally” arranged sculpture (Figs. 9
and 15) as was described by Bougek (1963). The inner
surface of the scape is similar to that of S. nigroaenea
except that the bare region is at least finely (Figs. 10
and 16) and sometimes distinctly longitudinally stri-
ate. Females of S. chontalensis have both the outer
(Fig. 7) and inner (Fig. 8) surfaces distinctly, longi-
tudinally striate, similar to such species as S. nigra and
S. endius. If S. chontalensis is the sister species of S.
nigroaenea + S. slovaca, then the sculpture pattern of
the scape of S. slovaca is indicated as likely an inter-
mediate stage in the development of the sculpture
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Figs. 7-16. Figs. 7-12, outer and inner surface, respectively, of female scape: 7 and 8, S. chontalensis; 9 and 10, S. slovaca;
11 and 12, S. nigroaenea. Figs. 13-16, middle part of outer and inner surface, respectively of female scape: 13 and 14, S.
nigroaenea; 15 and 16, S. slovaca.

pattern characteristic of female S. nigroaenea. The
above-mentioned hypotheses of character transfor-
mation and relationships among S. chontalensis, S. ni-
groaenea, and S. slovaca can be tested by including
samples of S. chontalensis in future evaluations of the
D2-D3 region of the 28s ribosomal gene and the nu-
clear rDNA 18s gene. Furthermore, sculpture pattern
of the scape seems to be a valuable feature for differ-
entiating at least females of Spalangia species and
should be investigated more comprehensively.
Boucek (1963) considered S. cameroni to have a
secondarily worldwide distribution with the excep-
tion of North America and Australia. However, Burks
(1969) subsequently synonymized S. muscidarum va-
riety texensis Girault (type collected from Dallas, TX,

in 1912) under S. cameroni, which indicates the species
has been present in North America since at least 1912.
Currently, S. cameroni is the most prevalent Spalangia
species throughout most of the United States, espe-
cially the eastern United States (Rueda and Axtell
1985). S. gemina was imported from Brasil and reared
in culture for at least 14 generations in Gainesville, FL,
(Geden 1996), but it was not released and is not
known to occur in America north of Mexico. Genetic
distance between S. cameroni and S. gemina supports
the conclusion of Bouéek (1963) that these two spe-
cies are closely related. Boudek (1963) also keyed
Spalangia longepetiolata Boucek with S. cameroni + S.
gemina, arelationship that is supported by their similar
pronotal sculpture. S. longepetiolata was introduced to
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California from Kenya and Uganda in 1967 and 1968
and became established according to Legner (1978).
As described above, both sexes of S. cameroni and S.
gemina have a more or less vertical mesopleural an-
terior oblique impression (cf. Fig. 4), and both sexes
lack setae from the forewing basal cell, whereas S.
longepetiolata has a larger, more triangular anterior
oblique impression (cf. Fig. 3) and males, although not
females, have the forewing basal cell partly setose.
Both sexes of S. longepetiolata also have a malar sulcus,
which is lacking in S. cameroni and S. gemina. S. gemina
is most readily differentiated from S. cameroni by rel-
ative length of the malar space and eye. The malar
space is at least slightly longer than the length and
distinctly longer the width of the eye in S. cameroni,
whereas in S. gemina the malar space is distinctly
shorter and only about the same length as the width
of the eye. Both sexes of S. gemina also have shorter
apical funicular segments than those of S. cameroni,
being slightly transverse compared with quadrate or
slightly longer than wide in females (Bouéek 1963, cf.
figs. 56, 24), and quadrate compared with oblong in
males.

S. endius is a cosmopolitan species. Genetic distance
between S. endius and S. nigra does not support the
“nigra” and “nigroaenea” species-groups of Boucek
(1963), because Boucek included S. endius in the ni-
groaenea rather than the nigra-group. However, sev-
eral of the morphological features discussed above
also do not support the monophyly of either the nigra-
or nigroaenea-groups. Morphological evidence for re-
lationships of S. nigra and S. endius is equivocal. S.
endius shares a similar structure of the mesopleural
anterior oblique impression with S. nigra (Fig. 3) and
the other two nigra-group species not included in the
molecular analysis, but also with S. longepetiolata.
However, a conspicuously setose petiole and a more
coarsely sculptured body indicate a closer relationship
of S. nigra with the other two members of the nigra-
group and with S. nigroaenca and related species
within the nigroaenea-group.

Discussion

Specimens of S. slovaca, from Kazakhstan and Rus-
sia, were identified originally as European populations
of S. nigroaenea until the molecular analyses indicated
a species difference. This hypothesis was supported
subsequently through morphological study, and the
identification was revised after comparison of speci-
mens with a paratype of S. slovaca. This species was
described by Boudek (1963) based on two females
from southeastern Slovakia, and the populations from
Kazakhstan and Russia represent new distribution
records.

The ITS-1 region was much more divergent among
Spalangia spp. than Muscidifurax spp. Kimura two-
parameter genetic distances among Muscidifurax spp.
were =0.07, whereas numerous deletions/insertions
made alignment of most of the ITS-1 region impossible
among the Spalangia species. No differentiation
among New and Old World populations of either S.
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cameroni or S. endius was observed. The two morpho-
logically very similar species, S. nigroaenea and S. slo-
vaca, were easily resolved in the ITS-1 region. The S.
nigroaenea amplicon was 140 bp longer than that of S.
slovaca. Multiple, independent insertion/deletion
events were responsible for the size difference.

As with the ITS-1 amplicon, no diagnostic differ-
ences were observed in the 28s D2-D3 region among
New and Old World samples of S. cameroni or S.
endius. Samples of S. nigroaenea and S. slovaca differed
by a genetic distance of 0.015. Interspecific genetic
differences among the Spalangia species included in
this study were 0.037-0.100, whereas that between M.
raptor and M. zaraptor it was 0.004. Further samples
from all biogeographic regions will be necessary to
verify the species status of putatively cosmopolitan
species and to test for unrecognized sibling species.

All of the Spalangia species examined in this study
could be differentiated easily with restriction digests
of the ITS-1 amplicon, which expands upon the num-
ber of species that can be differentiated using the
technique of Ratcliffe et al. (2002) for identifying
immature parasitoids inside the host puparium. Al-
though the genetic distance between S. nigroaenea and
S. slovaca was smaller than that observed between the
other recognized Spalangia species included in this
study, it was nearly 4 times greater than the genetic
distance between M. raptor and M. zaraptor. The ge-
netic distance between S. nigroaenea and S. slovaca
supports their consideration as distinct species.

Numerous structural, sculptural, and setal features
of Spalangia species are suitable for phylogenetic anal-
ysis; however, most are shared among the species in
different combinations, which complicates hypothe-
ses of polarity and resolution of relationships based on
morphology. An accurate hypothesis of relationships
based on morphology is not possible without a com-
prehensive study of the 51 valid world species listed by
Noyes (2002). Although preliminary because of the
small number of species included, our study clearly
demonstrates that the D2-D3 region of the 28s ribo-
somal gene and the nuclear rDNA 18s gene provide an
alternative method of phylogenetic analysis that also
can be used to test or supplement hypotheses derived
from morphology. Inclusion of additional species,
such as S. irregularis, S. rugulosa, S. chontalensis, and S.
longepetiolata, in future molecular studies should help
resolve relationships among the species comprising
the nigra- and nigroaenea-species groups. Such a
method may prove effective for establishing a phylo-
genetic set of relationships among the species of Spal-
angia incrementally, rather than a single comprehen-
sive study of the world species made necessary by
morphology.
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